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Direct approach to the study of soliton perturbations

Jiaren Yan and Yi Tang
China Center of Advanced Science and Technology (World Laboratory) P.O. Box 8730, Beijing China 100080
and Department of Physics, Hunan Normal University, Changsha 410031, Hunan, China
(Received 13 February 1996; revised manuscript received 7 Jung 1996

A direct approach in studying the soliton perturbations of nonlinear evolution equations has been developed.
It is based on the method of the derivative expansidoislinearization of the perturbed equationand the
separation of variable€or solution of the linearized equationdt differs substantially from the past direct
methods. The apparent advantage of this approach is that it relies on no knowledge of the inverse scattering
transform. Besides, it is very concise and easy to understand. As an example, we use it to study the perturbed
Korteweg—de Vries equation. The results we obtained agree with what other authors have found.
[S1063-651%96)12311-4

PACS numbdrs): 42.65.Tg, 42.81.Dp

[. INTRODUCTION “two timing” procedure. The modulations in the speeds and
in the locations of the soliton can be computed directly from
The physical situations that give rise to the standard solithe soliton wave form. Representation of the Green'’s func-
ton equations tend to be highly idealized. In more realistiction necessary for the calculation of the first-order correction
situations, we derive equations that differ slightly from theis found in the framework of the IST. Herman’'s excellent
standard ones by small additional terms that are called pework should be noted hefd3,14. In his papers, the method
turbations. One of the most powerful techniques in dealingf multiple time scales is used to linearize the perturbed non-
with these cases is based on the inverse scattering transfollinear evolution equations. After that, the linearized equa-
(IST) [1-5], which requires the unperturbed equations to betions are solved by inverting the corresponding operators.
exactly sovable by the IST. Apart from the sophisticationFor doing that, the associated “Lax pair” of the given evo-
and the restriction of the range of applications, this techniquéution equation is used to establish relations between the
is inconvenient for one who is not familiar with IST. eigenfunctions of the linear operator and that of the associ-
Another alternative way to study soliton perturbations isated eigenvalue problem of the given evolution equation.
the direct method. Since it was first developed by OstrovskiiThen a complete set of eigenfunctions needed for the inver-
and his colleaguels,7], many other authors have used vari- sion of the operator is obtained.
ous direct methods in their wor8-12]. Here we would We find a direct method to study soliton perturbations.
roughly like to describe the characteristic features of thisThis method relies on no tools of IST. Besides, no approxi-
method. Original perturbed nonlinear equations are usuallynations are employed. It is very concise and easy to under-
linearized by expanding their solutions about the unperturbedtand. In this paper, we apply it to the perturbed
solutions for the purpose of taking the perturbations into acKorteweg-de VriegKdV) equation in an attempt to demon-
count directly[11]. At the same time, derivative expansion strate it. Now we describe the procedure roughly. As usual
for the time is always needed to eliminate the potential secuthe derivative expansion method is used to linearize the per-
lar terms. The basic technical ingredient of this method is tqurbed soliton equations. By introducing a coordinate system
find eigenfunctions of a linear operator associated with thenoving with the soliton, namely, by choosing the soliton
linearized equation. The perturbations and the first-order cophasez as a new independent variableand the time vari-
rections are expanded into a series based on a complete setaiflet are separated in different terms of the linearized equa-
those eigenfunctions. Then the time dependence of the soliions. Obviously, these equations can be solved in principle
ton parameters and the first-order corrections are readilpy the method of separation of variables. The key to the
available. problem js how to find the eigenfunctions of an appropriate
Implementation of this idea can be seen, for example, iroperatorL and its adjoint_", based on which, we can con-
Refs.[16,17 in which Kaup used a direct method to study struct two complete sets of states as the bases of a perturba-
sine-GordonSG) equations by employing some approxima- tion expansion. Fortunately, the eigenfunctions can be de-
tions. Several other authors have also used direct methodsfived in a general way, and the completeness and
their study of soliton perturbations by adopting a quasistaerthogonality of the bases can be proved through a straight-
tionary assumptioi18—20. These works have no need to forward calculation with the aid of the residue theorem. It
rely on the techniques of IST. Important contributions to themust be pointed out that since our eigenfunctions are time
direct perturbation method for the nonlinear Sclinger independent, our approach is simpler than the other direct
(NLS) equation have been made by Keener and McLaughlinmmethod, and it is particularly convenient for studying the
[15]. Their approach is based on a Green's function andime-dependent perturbations. In this paper, the damping
KdV equation and KdV-Burgers equation have been dis-
cussed in detail as two important examples. The results are
*Mailing address. consistent with those obtained by other authors. We believe
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that this approach can be extended to deal with NLS equaFhe zeroth-order approximation equati@ is just the stan-

tions, SG equations and perhaps some other nonlinear evdard KdV equation. It has a single-soliton solution that is

lution equations. formally the same as Eq2):

II. LINEARIZATION OF KdV EQUATION u®(x,ty) =2a’ seciz, z=a(x—§), &,=4a’ 1
Let us consider the perturbed KdV equation
Due to perturbation, the soliton parametarand £ are now
U;+ 6uuy,+ Uy,,= eR[ U], (1) supposed to be functions of the slow time varialtlgs,,...,
) o o . but a is independent ofy, and the dependence éfon t is
where the subscripts stand for partial differentiation with re-giyen py ¢, =4a2. It follows from Eq.(12) that
spect to timet and space, e is a small positive constant 0

measuring the weakness of the perturbatiorre<1), and uV=4aa, ¢;(2)+4a% ¢y(2), n=1.2,..., (13
the perturbation termR[u] is a known function of n n n
U,Uy,Uyy ... . Itis well known that the standard KdV equa- \yhere
tion has a single-soliton solution
1 9
u=2a? secRa(x—4a’t—x,), 2) $1(2)= 1= — u®=(1-2z tante)secHz, (14)
wherea andx, are two real parameters that determine the
;oliton height(width .and velocity as we]lgnd jnitial posj- by(2) = i3 i u® =tantz secRz. (15)
tion, respectively. Since what we study in this paper is the 4a” ¢
effects of perturbation on a single soliton, Ed) is subject ) . .
to the initial condition Then the linearized KdV equation®) and (10), together
with the appropriate initial condition€l1l) are reduced into
u(x,0)=2a? secha(x—Xxo). (3)  the following form with the aid of Eq(13):
At first, we linearize Eq(1) following the lines of Refs[11, U§3)+a3£u(l)= FN(2)
12]. The independent variableis transformed into several
variables by =RW—4aa ¢1(2)—4a% $2(2),
t,=€"t, n=012..., (4) u¥(z,0)=0, (16)

where eaclt, is an order ofe smaller than the previous time. U@+ a3 u?=F@(z)
Thus the time derivatives should be replaced by the expan- ‘o

sion =R?—4aa, ¢1(2) 4%, ho(2) —u)
— 2
dy=dy,t €dy T2y, 5 —6au®ull,
At the same timey andR[u] are expanded in an asymptotic
series (] are exp yme U@ (2,0=0, 17
— ,(0) D1 22 ... wherez is the space coordinate in a system moving with the
USUTHeu™+ eruri - © soliton, andL is a linear differential operator defined as fol-
R[u]=R®[u0]+ eR@[u©@ uD]+--- . (7 lows:
_— . . .~ d? d
Substituting Egs(5)—(7) into Eq. (1), and equating the co- L= E+(12 sechz—4) e 24 tantz seclz. (18

efficients of each power o, we obtain the following ap-
proximation equations of different orders: It is apparent that is not self-adjoint, and its adjoint is

uY +6u QU + Ui =0, €) L d
L'=gz+(12 sechiz—4) . (19
u +6u@ulP+6udu™ + Ul =RPU]-u”, (9)

Ill. EIGENVALUE PROBLEM
uZ +6u@ul® +6uldu® + uZ)

=RAMUOuP] -y —u —euPut L (10

Meanwhile, the initial condition3) should be replaced by

u'®(x,0)=2a? secha(x—xy),

u™(x,0)=0

for n=1,2,....

11

Now we derive the solutions of the linearized KdV equa-
tions(16) and(17) by the separation of variables. It is known
that the key to this problem is to solve the eigenvalue prob-
lem of operator and its adjoint_",

Lop=\d. (20)

LTy=)\"4. (21)



6818

In Appendix A, the eigenfunction of Eq20) for continuous
eigenvaluen=—ik(k?+4), —o<k<w is derived in a gen-
eral way,

d(z,k) [k(k?+4)+4i(k?+ 2)tantz

~ 2ak(K2t 4)
— 8k tantfz—8i tank'z]e'¥?, (22)

and it is easy to check directly thatalso has a eigenfunc-
tion for discrete eigenvalug=0,
¢,(z)=tantz sechz. (23

Similarly, for the associated eigenvalue problégi), we
have

[k?>—4ik tantz—4 tantfz]e 2
(24)

1
K= ——
wzk) V27 (K2 +4)

for continuous eigenvalug’ =ik (k?+4), —wo<k<oo, and

1(z)=sechz (25)
for the discrete eigenvalug =0.

There is a functiong,(z) =(1—z tantz)secliz that satis-
fies the equatiorl ¢,(z)=—8¢,(2). It turns out to be a
standard problem and is well known thai(z) needs to be
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f(k)=jicF(z)w(z,k)dz, (3D

szle(z)z//j(z)dz, j=12. (32

IV. EFFECTS OF PERTURBATION ON A SOLITON

Now we return to Eq9(16) and(17). First, let us consider
the first-order approximation equatidd6). To solve this
initial-value problem by separation of variables, we expand
u® andF® on the basig¢} as

oo

2
TW(tg,k) p(z,k)dk+ 21 T{Y(to) ¢i(2),
e
(33)

u(l)(z,t0)=Pf

FO=RM—4aa, ¢,(2)—4a%, ¢a(2)

2
:Pf fOK) p(zk)dk+ D, FVi(2).  (34)
— j=l

The expansion coefficients &f(*)(z) are obtained by em-
ploying the orthogonality relations Eq$27)—(29) as fol-
lows:

fD(k)= fx ROP[UO(2)]¢(z,k)dz, (35)

included in the completeness relationship. In the meantime, -

for its adjoint states, another function),(z)=tanhz
+zsecz needs to be included as well. The complete-
ness  of {¢}={¢(zK),¢(2):j=12 and {§
={¥(z,K),4i(2);i=1,2 is expressed as
2
Pfxcb(z,k)w(Z’,k)kor;l bi(2)9i(2')=8(z—2"),
(26)

where P denotes the principal value of an integral, sk

is a simple pole of the integrand. The following orthogonal

relations are also proved in Appendix C:

ficd)(z,k)z/;(z,k’)dzz o(k—k"), (27)

| sanp@ir [ sans@azo -1z,
@9

fjcm¢J(Z)¢|(Z)dZ: 5” y j,|=l,2 (29)

Based on this complete basis, any functfefz) can be ex-
panded in a generalized Fourier integral as follows:
2

F(z)szwf(k)¢(z,k)dk+j§=:1fj¢j(z), (30)

where the generalized Fourier coefficients can be obtained by

the orthogonality

= —4aa, + J RO Nn(2)dz (@39

— o0

1= —4a%, + f RUUO(2)]a(2)dz. (37)

We now substitute Eq$33) and(34) into Eq.(16), and note
that L(z,k)=—ik(k®+4)¢(z,k), Ld,(2)=0, and
L¢1(2)=—8¢,(2). Then Eq.(16) may be rewritten as

me [T(l)(to K)— ik(k2+ 4)a3T(1)(t0 K)1p(z,k)dk
+ T (to) py(2) + TS (to) () — 83T (to) o(2)

2
:pf f<1>(|<)¢(z,k)d|<+2l i ei(2), (39
o =

where the overdot signifies derivative with respecttgo
Multiplying Eq. (38) by #(z.k), #41(2), and ¢»(z) succes-
sively, and then integrating ovet we obtain the following
ordinary differential equations:

T<1)(to,k) —ik(K2+4)a3T W (tq,k) =P (k),

TH(0k)=0, (39
TP (te) =Y, TM(0)=0, (40)
T (tg) ~8a° TP (tg)=15", TH(0)=0, (41
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where the zero-initial conditions  TM(0Kk) = 1—exgik(k?+4)a%]

=TM0)=TH(0)=0 come from the second equation in G(l)(Z,Z’;t):—PJ k(K d)a®

Eq. (16). Since bothf Y andf{" are constants, Eq§40) and o

(42 will lead to the secularity. In fact, while integrating Eq. X ¢(z,K) (', k)dk. (49)

(40), it yields T{V=f {Yty, which grows infinitely in time.

So we must demand that In a similar way, we can derive the higher-order effects of
0 Dre perturbation to the soliton. For example, the second-order
f17=0—-T;"(t)=0. (42 effects are given as follows:

Then Eq.(41) is reduced toT §)(tg) =f £, and similarly, 1 (=
:EJ {R(Z)[U(O)yu(l)]_Ugll)—ﬁau(l)u(zl)}secﬁz dz

ay,
f=0-T5(ty)=0. (43) (50
Now we are going to find out the effects of perturbation on
the soliton. At first, inserting Eq942) and (43) into Egs. £ :i fw (R u(1>]—u<1)—6au(1)u(l)}
(36) and (37), we get the following two important formulas 2 4a% |, ’ t z
immediately:
X (tantz+z seclz)dz, (52)
1 ©
= (D[ 4(0)
ar, 4a _wR [u™ ]y (2)dz (O J‘oo f@(k)
L . ik(k?+4)ad
=722 | RYu@]sectiz dz (49 x{1—exdik(kK>+4)a% ]} p(z,k)dk,  (52)

where

1 ©
-7 | ROLO2102

f (k)= f [R<2>—ugll)—6au<1>u<zl>]¢/(z,k)dz. (53)

o0

1
:EEJ RV[u@](tante+z seckz)dz.  (45)

- A more detailed discussion is omitted here for simplicity.
Obviously, Eqgs.(44) and (45) are the same with those ob-
tained in other waygl1,12. They determine how the soliton V. TIME-DEPENDENT PERTURBATIONS

shape and position are affected by the perturbation. As to Eq. , . . .
(39), it is a first-order ordinary differential equation with !N this section, we show that our approach is particularly

constant coefficients and the right-hand side is independef@nvenient for the study of the time-dependent perturbations.
of to, S0 it can be solved easily in a standard method: For this purpose, we assume that the perturba&pnt) is a
given function ofx andt. In the coordinate system moving

T (ty, k) = — FD(K){1— ik(K2+ 4)a3t 1V ik (K2 with the soliton, it is denoted byr(zt). Obviously, Egs.
(to.k) ()fL—exiik( Jatoliik( (33—(41) in Sec. IV still apply, except that coefficients
+4)asd. (46) fB(k) and f(Y), j=1,2 are now time dependent, and are

denoted byf™(ty,k) and f {!)(ty), respectively. For later
Substituting Eq. (46) into Eq. (33), and noting that convenience, we rewrite Eq&9)—(41) as follows:
T(to) =TE(to) =0, we get _
TW(tg,k) —ik(k?+4)a’TM(to,k) = f(tg k),
P fD(k)

) = _ -~
u(z,to) = PLC k(KT 2)a3 TM(0k)=0. (54)

x{1—exdik(k®+4)a® :
{1-exdik(k+4)a’ty]} d(z,k)dk, (47 T(ll)(to)zf(ll)(to), T(ll)(0)=0, 55

wherefM(k) is determined by the perturbation through Eq. _

(35). One can see clearly from E®7) that the first-order T(Zl)(to)—8a3T(11)(to)=fgl)(to), T(21>(o):o, (56)

correctionu(l)(z,to) is associated with the continuous spec-

trum only. While combining Eq(35) with Eq. (47), this  \yhere

correction can be expressed in terms of a Green’s function,

. (1) N EY
u(l)(z,to):f GY(z,z:to)RP[u®(z")]dz, (48 Mtk JixR (2.to)Y(zk)dz, S

¥yhe(;ebthe first-order Green’s functid®?(z,z’;t,) is de- fD(tg) = — 4aa + fx RO(zt) 4 (2)dz,  (58)
ined by e
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. 0 _ 3
((t)=—da%8,+ | RU@tpadz g9 AR AE TG EE

- |7 RO @) + g2tz a2

The solution of Eq/(54) can also be derived in a standard _

method: .
T(t0,0= | dr 19K ext k(€ 4)a%(to= ) o (-
0 (60) ug'=P fOOde_mdk ik(k2+4)a3f V(r,k)
We have seen that, in the case of time-independent perturba- w exilik(Z+4)a%(t— 1)]b(z.K)

tions, the secularity condition i§{"=f =0 (which just

determines the time dependence of the two soliton param- o 1

eterg. Although we wonder whether it is always true for +P J_mdk fH(to, k) ¢(z,k), (70
time-dependent perturbations, we assume that @@s.and

(43) given in Sec. IV still apply. Of course, for the time-

dependent perturbations, they should be replaced by —4a%uV+6au@ult + 6auPuM +acult,

(1) —f(1) — t o
fi7(to) =1;"(te) =0, (61) :pfodTJ dk (k)
which still leads toT {V(to) =T H(te)=0 and ° - i
xexfdik(k?+4)a3(ty— 7)]a’L ¢(z,k)

1 0
a,= 7z | RYzt)y(2)dz, (62) o (=
— =—P f er dk[ik(k®+4)a®1fV(r,k)
0 —®
1 ©
t,= 703 | RP@t)wa(2)dz (63) X expik(k*+4)a’(ty— )] B(z,k). (71
From Eqgs.(33) and (60), we then obtain the first-order cor- Consequently, the left-hand side of the first equation in Eq.
rection: (67) becomes
t, 0
u(l)(zyto)zp f ode dk f(l)(Tyk) ut_4auz+63uuz+a3uzzz
0 —o0
xexdik(k®+4)a3(t—7)]p(z,k). (64 © 2
=e f RU(Z o) %, ¢(2)44(2)dZ

Substituting Eq(57) into Eq. (64), we obtain the first-order
Green'’s function for time-dependent perturbations:

+6Jm dk fV(ty,k) d(z,k). (72

t [
u(z,ty)= j OdTJ dzZ’ RV (z' 1) G (z,2":ty,7),
0 — o

(65  Noting that up to first-order  approximation
R(z,t)=RM(z,t,), and employing Eq(57), we finally ob-

G(”(LZ’;to,r):Pf dk exdik(k?+4) tain

x a3(ty— 1) ]b(z,K) (2’ k). (66) u—4adu,+6auu,+asu,,,

It must be pointed out that although E@1) [which corre-
sponds to the secularity conditiori42) and (43)] is sug- :ij
gested as an assumption, it is easy to check that the solution —w
u obtained under this assumption really satisfies the per-
turbed KdV equation and the appropriate initial condition

P ch dk ¢(z,k)¥(z' k)

2
+J§l ¢j<z>wj<z')}dz'

u—4adu,+6auu,+asu,,~ eR(zt),

u(z,0)=2a® sechfz. (67) =eflR(l)(z’,to)é(z—z’)dz’

In fact, up to first-order approximation, we have = eRV(z2,t,). (73)

It is clear from Eq.(65) that u¥)(z,0)=0, and thusu(z,t)

According to Eqs(13) and (62)—(64), it follows that satisfies the initial condition(z,0)=2a? secHz.



VI. DAMPING KdV EQUATION

As an important example, we consider the damping Kd
equation in whichR[u] = —u,
€u.

U+ BU U+ Uyyy= — (74
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It is somewhat different fronu; given in Eq.(73) in Ref.

13l by a factor—(\?+ 73) in the integrand. This difference

is caused by some errors in the calculation in R&8]. In
fact, if we start from Eq(B1) in Ref.[13], we obtain also
our uj.

Moreover, ouru™ given by Eq.(79) is consistent with

At first, the time dependence of the soliton parameters can biéat obtained by the inverse scattering perturbation theory

easily obtained from Eqg44) and (45):

2a? seclfz secfz dz= —2a/3, (75

—o0

at:

1 4a

1 0
&=~ 723 f 2a’ sechz(tantz+z seclfz)dz=0.
(76)
It follows from Eq. (75) immediately that

a=agy exp —2t4/3), (77

which means that the height of the soliton dampens with
time exponentially. Next, we calculate the first-order correc-

tion given in Eq.(47), wheref)(k) can be calculated from

(k)= \27a2k/3 sinhg K. (78)

Substituting Eq(78) into Eq. (47), we obtain immediately
uV(z,ty)
2w PF 1—exfik(k®+4)a’t,]
~ 3ia v (K*+4)sinh 7k/2)

b(z,k)dk.

(79

We have seen from Eq$75) and(76) that the time depen-
dence of the soliton parameters is just the same as that o
tained by the other methodl&]. We would like to point out
that this is true for the correction'® also. At first let us
compare it with that derived by Hermah3,14]. To see this,
we note that in Eq(79), parameteia should be taken as a

[1]. To show this, we neglect the slow time dependence of
the soliton parameters in the first-order correction, namely,
we letto=t, a=a,, and&=&,+4a’t in Eq. (79), up to the
first-order approximation. Then we take the same approxi-
mation as Ref[1]: (a) Neglect the slowz dependence in
tanhz, i.e., we let tanfiz=1 in the integrand at the right-
hand side of Eq(79); (b) Since the factoe'®? in the inte-
grand of Eq.(79) oscillates rapidly for large, we expect
that the dominant contribution to the integral will come from
the region neak=0. Thus the terms with higher powerslof
can be neglected. After doing thesg" is simplified into

« dk e2ik(xffo)

St 8ik2t _ . —8ikalt
Pf_mzwi (e e .

uD(x,t)=

3a,
(82)

Consequently,

o

I

~ 33,303 A'{

u =

dx eiK(S— §0)(ei K3t_ e—4ia(2)/<t)
6’7Ta0

(305.?3} - 5()(_ 50_ 4agt)a (83)

(x— & (3n13

(€N =
ut(x,t) 3ag .

dk Ai(k)— 6(x—&y—4ajt),
(84)

where 6(x) and Ai(x) are the step function and Airy func-
tion, respectively. Equationé82)—(84) are all the same as
fhose obtained by the inverse scattering perturbation theory

given by Eqs(9.2.3)—(9.2.33 in Ref.[1].

VIl. KdV-BURGERS EQUATION

As another example, we consider KdV-Burgers equation

constant up to first-order approximation, and we make the

following transformation;a=1,, z=¢, k=2\/7,, and re-
placety by t. Then¢(z,k) is related to functiond”(¢,t;\)
used in Refs[13, 14 by

22w\ M—ing

exp(— 8i\ 7at) DA, t;\).
(80)

P(z,k)=

Substituting Eq(80) into Eq. (79), and through some calcu-
lations, we get

u<1>:E P F

3ia
= exp(—8i\ 73t) —exp(8i\3t)
=P Lc 12\ (iX + 770)2 sinh(7\/ 77)

1—exdik(k®+4)a%t]
(k?+ 4)sinh( 7k/2)

#(z,k)dk

DA, t;N)dN.

(81)

U+ BU UL+ Uy = €Uy . (85
HereR[u] =u,, and thus
RY[u@]=u¥=8a* seckz—12a* secfz.  (86)
Inserting Eq.(86) into Egs.(44) and (45), we get
6 oo
= J (8a* secz—12a* sectfz)secliz dz
= —8ea’/15, (87)

E e2)
&=4a’+ P f (8a* secz— 12a* secfz)(tante

+z secz)dz=4a?, (89

respectively. It follows that
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a=ay/(1+ 16ealt/15)?, (89) Lo®=—-3¢2—12sechzg@—36%.... (A8)

E=&,+15In(1+ 165a§t/15)/4e, (90 It is easy to solve EqQ4A5)—(A8) successively, and then we
get the following special solution:
which are the same as those derived by other methibts

To find out the first-order correction, let us calculate the 09 =c tantz secfz, 6Y=c(}-secHz),
expansion coefficient corresponding to the continuous spec-
trum: c

92 =— > tante,

f<1>(k):f (8a* seclfz—12a* secliz) y(z,k)dz
o 0¥=1c, #M=0 for n=4, (A9)

= 2472 ma*(2k/15—k>/100)/ (k*+ 4)sinh 7k/2
el & Jsinh(wk/2) where the arbitrary constantis determined by the normal-
+4+27a*k/3 sinh(wk/2). (91)  ization condition as=8i/k(k?>+4)+27. Consequently we
obtain
The correction is obtained by inserting E§6) into Eq.(35).

It is interesting that under the same approximation as that 1 ) )
introduced for the damping KdV equation, we have z,k)= —————=[k(k"—4) +4ik* tantz
ping q HR= o G K4
32 = dk e?kx~ ) . .
(1) —_ < = +8k secHz+8i tantz seciz]e'k?
urX =" 753 P f,x om K ]
1

X (e8ik3t_678ikagt), (92) :W E [k(k2+4)+4|(k2+ 2)tanfz
which is proportional to the correction for the damping KdV — 8k tanifz—8i tanHz]el2. (A10)
equation[see EQ.(82)]. We should note that they have an
opposite sign. The eigenfunction/(z,k) of LT can be derived in the same

way.
APPENDIX A: DERIVATION OF EIGENFUNCTIONS
#(zk) AND §1(z,k) APPENDIX B: COMPLETENESS OF SETS {#} AND {4}
Let us consider the eigenvalue problem We start from the integral
Le=rg, (A1) . Al
- Pf qﬁ(z,k)zp(z’,k)dk:Pf — k=201 £(Kk) |dk,

where L=d%dZ+(12 sechz—4)d/dz—24 tanlz secHz. —c —w| 27
Obviously,L—d3dZz—4d/dz asz—*+». We assume that (B1)

d(z,k)=6(z,k)e?, (A2)  wheref(k) is defined by

where 6(z,k) is supposed to have the asymptotic
behavior: 6(z,k)—const asz—*«. Then the asymptotic
equation of Eq(A1) leads ton=—ik(k?+4). Inserting Eq.
(A2) into Eq.(Al), one obtains an ordinary differential equa- Inserting Eqs(22) and (24) into Eq. (B2), f(k) is rewritten
tion for 6, as

1 H ’
f(k)=¢(z,k)¢x(z’,k)—§e'k(z’z ). (B2)

Lo+ik(3d¥dZ2+ 12 sechz) 6—3k?d6/dz=0. (A3) T
f(k)=5— e ?g(k)
To determinef(z,k), we expand it into a power series idf m
whose coefficient®("(z) are functions of only,

1 ik(z—2")
=5, € [91(K) +92(k) +91(k)g2(K) ],

6=00(2)+ik0V(2) + (ik)26D(2)+--- . (A4)
B3
Substituting Eq(A4) into Eq. (A3), and equating the coef- (B3)
ficients of each power ak, one obtains the following recur- with
sion equations:
4
LoO=0, (A5) 91(K) = 1z (ik tanfz—2 tanifz+ 2i tante seckz/k),
N (B4)

LoW=—-309—12 sechzg?, (AB)

4 1 ! !
LoD = _30(212)_ 12 secﬁza(l)—Sa(z(’) , (A7) go(k)=— Wi (ik tanhe’ +tantfz’ +1). (B5)
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It is easy to see thdt(k) as a function of complex variable
is analytical everywhere except for a simple pkje=0 and
two double polest2i, at which the residues df(k) can be
derived in a standard way:

Resf(0)= limkf(k)
k—0

—i tantz secfz(1—seclz’)/ =,

(B6)
. . d .
Resf(x£2i)= lim a([(kiZl)f(k)]
k— *2i
i )
=5 tantz seclz(sechz’e*? +z' secifz’

i
Tz secz')+=— e*Z sechz seclfz’.
2
(B7)

Now, let us return to EqB1). Obviously the first term of the
integrand at the right-hand side of E¢B1) contributes
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Since the factor tarfin the integrand is a periodic function
with an imaginary period, we choose to be the bound-
ary of a rectangular region infinitely long:—wo<z
<, O=gy=m. In this region the integrand is analytic ex-
cept for a simple polel,=i7/2. We note thaté K¢
oscillates rapidly for large. Then the integral along the two
straight line segments:z=+w, 0O<»n=< should be zero.
It follows that

ﬁg f1(Qdg=[1—e kK KIm) (C3

On the other hand, according to the residue theorem,

ﬁcfl(g)dgzz’ﬁl Resfl(go) (C4)

The residue is easily obtained by the standard method

Resfy({o)= lim ({—{o)f1(H=e"«K)2  (C5)

{—{o

&z—2'). The integral of the second term can be calculated

with the aid of the residue theorem. Sinpg(k)|—0 as
|k| —c°, according to Jordan’s lemma, it follows that
Pf f(k)dk==2mi[} Resf(0)+Resf(*2i)],

(B8)

where, the upper or lower symbol correspondszte z')>0

or (z—2')<0, respectively. Substituting EqéB6) and (B7)
into Eq. (B8), we get immediately

fm f(k)dk= — (secfz— z tantz secH)sechz’

—tantz secHz(tante’ +z' seclz’)
=—[¢1(2) h1(Z") + Po(2) ho(2')].

Finally we obtain the completeness relation from Edgl)
and(B9),

(B9)

2
fwszﬁ(z,k)tﬂ(Z’,k)dk+j2l di(2)h(2')=6(z—2").
(B10)

APPENDIX C: ORTHOGONALITY OF SETS {¢} AND {4}

Before the proof of the orthogonality relations, we must

Comparing Eqgs(C3), (C4), and(C5), we get immediately

Ilzf e k=K)Z tanhz dz=im/sinht w(k—K’).
(C6)

Starting from Eq.(C6), and employing the techniques of
integration by parts repeatedly, we can perform the following
integrals successively:

I,= fw el (k=K")z

dz=m(k—Kk')/sinhs w(k—k'),

derive some useful integral formulas. At first let us calculate

the following integral by the aid of the residue theorem:

Ilzf e kK2 tantg dz (C1)

To do this, we consider a complex integral along a closed

pathc in plane{=z+i 5 as follows:

ifl(é)d& fﬁce‘“‘"")f tanh d¢. (C2)

costfz
(C7)
- sintez
_ i(k—k")z
E J,xe coshz dz
i
= > W(k—k’)z/sinh%ﬂ'(k—k’), (C8)
_ 7 Lik—xz _1 L3
+4(k—k')]/sinh%7'r(k—k’), (C9
© sinhz i
— i(k—k')z - L4
s J’,we cosﬁ’zdZ 74 L(K=K)
+4(k—k')?)/sinh 7(k—K). (C10

Now we return to the orthogonality relations. As an example,
let us perform the following integral in detail:

1 . ,
Ze'(k*" )24 (z)|dz

J':¢(z,k)z//(z,k’)dz: ﬁo

©

=5(k—k’)+j7oo f(z)dz, (C1)



6824

where the functiorf(z) is defined as
, 1 i(k—k')z
f(z)=¢(z,k) (z,k )—Ee . (C12

Equations(22) and (24) can be rewritten into

&(z,k)=ce*? k(k?—4)+4ik? tantz+ 8k
: costz
+8i sinfe C13
' coshz|’ (C13
, 4
N n'a=iK'Z (L2 AV _ Ailk’
P(z,k')=c'e (k 4)—4ik’ tantz+ cosiz |’
(C19

respectively. In Eqs(C13 and (C14), c=1/\/2mk(k?+4)
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J | f(z)dz=cc'[ —4i(k— k') (kk' +4)1;+ 4(k3+ 4k?k’

+2kk'2—12k+ 8K’ ,+ 4i (4k?>— 8kK'’
+2k'?2—8)13+32(k— k')l 44321 5]. (C15

Inserting Eqgs. (C6)—(C10 into Eg. (C15, we get

JZ..f(2)dz=0 through a series of calculations. Finally we

obtain from Eq.(C11) that

f H(z,K) p(z,K' )dz= 5(k—K'). (C16)

Thus Eq.(27) has been proved. The orthogonality relations

andc’=1/\2wk(k®+4) are normalization constants. Sub- (28) can be derived in the same way, while E2Q) is easily

stituting Egs.(C13 and(C14) into Eq.(C11), we get

obtained by a straightforward calculation.
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