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A direct approach in studying the soliton perturbations of nonlinear evolution equations has been developed.
It is based on the method of the derivative expansions~for linearization of the perturbed equations!, and the
separation of variables~for solution of the linearized equations!. It differs substantially from the past direct
methods. The apparent advantage of this approach is that it relies on no knowledge of the inverse scattering
transform. Besides, it is very concise and easy to understand. As an example, we use it to study the perturbed
Korteweg–de Vries equation. The results we obtained agree with what other authors have found.
@S1063-651X~96!12311-4#

PACS number~s!: 42.65.Tg, 42.81.Dp

I. INTRODUCTION

The physical situations that give rise to the standard soli-
ton equations tend to be highly idealized. In more realistic
situations, we derive equations that differ slightly from the
standard ones by small additional terms that are called per-
turbations. One of the most powerful techniques in dealing
with these cases is based on the inverse scattering transform
~IST! @1–5#, which requires the unperturbed equations to be
exactly sovable by the IST. Apart from the sophistication
and the restriction of the range of applications, this technique
is inconvenient for one who is not familiar with IST.

Another alternative way to study soliton perturbations is
the direct method. Since it was first developed by Ostrovskii
and his colleagues@6,7#, many other authors have used vari-
ous direct methods in their works@8–12#. Here we would
roughly like to describe the characteristic features of this
method. Original perturbed nonlinear equations are usually
linearized by expanding their solutions about the unperturbed
solutions for the purpose of taking the perturbations into ac-
count directly@11#. At the same time, derivative expansion
for the time is always needed to eliminate the potential secu-
lar terms. The basic technical ingredient of this method is to
find eigenfunctions of a linear operator associated with the
linearized equation. The perturbations and the first-order cor-
rections are expanded into a series based on a complete set of
those eigenfunctions. Then the time dependence of the soli-
ton parameters and the first-order corrections are readily
available.

Implementation of this idea can be seen, for example, in
Refs. @16,17# in which Kaup used a direct method to study
sine-Gordon~SG! equations by employing some approxima-
tions. Several other authors have also used direct methods in
their study of soliton perturbations by adopting a quasista-
tionary assumption@18–20#. These works have no need to
rely on the techniques of IST. Important contributions to the
direct perturbation method for the nonlinear Schro¨dinger
~NLS! equation have been made by Keener and McLaughlin
@15#. Their approach is based on a Green’s function and

‘‘two timing’’ procedure. The modulations in the speeds and
in the locations of the soliton can be computed directly from
the soliton wave form. Representation of the Green’s func-
tion necessary for the calculation of the first-order correction
is found in the framework of the IST. Herman’s excellent
work should be noted here@13,14#. In his papers, the method
of multiple time scales is used to linearize the perturbed non-
linear evolution equations. After that, the linearized equa-
tions are solved by inverting the corresponding operators.
For doing that, the associated ‘‘Lax pair’’ of the given evo-
lution equation is used to establish relations between the
eigenfunctions of the linear operator and that of the associ-
ated eigenvalue problem of the given evolution equation.
Then a complete set of eigenfunctions needed for the inver-
sion of the operator is obtained.

We find a direct method to study soliton perturbations.
This method relies on no tools of IST. Besides, no approxi-
mations are employed. It is very concise and easy to under-
stand. In this paper, we apply it to the perturbed
Korteweg-de Vries~KdV! equation in an attempt to demon-
strate it. Now we describe the procedure roughly. As usual
the derivative expansion method is used to linearize the per-
turbed soliton equations. By introducing a coordinate system
moving with the soliton, namely, by choosing the soliton
phasez as a new independent variable,z and the time vari-
ablet are separated in different terms of the linearized equa-
tions. Obviously, these equations can be solved in principle
by the method of separation of variables. The key to the
problem is how to find the eigenfunctions of an appropriate
operatorL̂ and its adjointL̂†, based on which, we can con-
struct two complete sets of states as the bases of a perturba-
tion expansion. Fortunately, the eigenfunctions can be de-
rived in a general way, and the completeness and
orthogonality of the bases can be proved through a straight-
forward calculation with the aid of the residue theorem. It
must be pointed out that since our eigenfunctions are time
independent, our approach is simpler than the other direct
method, and it is particularly convenient for studying the
time-dependent perturbations. In this paper, the damping
KdV equation and KdV-Burgers equation have been dis-
cussed in detail as two important examples. The results are
consistent with those obtained by other authors. We believe*Mailing address.
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that this approach can be extended to deal with NLS equa-
tions, SG equations and perhaps some other nonlinear evo-
lution equations.

II. LINEARIZATION OF KdV EQUATION

Let us consider the perturbed KdV equation

ut16uux1uxxx5eR@u#, ~1!

where the subscripts stand for partial differentiation with re-
spect to timet and spacex, e is a small positive constant
measuring the weakness of the perturbation~0,e!1!, and
the perturbation termR[u] is a known function of
u,ux ,uxx . . . . It is well known that the standard KdV equa-
tion has a single-soliton solution

u52a2 sech2a~x24a2t2x0!, ~2!

wherea and x0 are two real parameters that determine the
soliton height~width and velocity as well! and initial posi-
tion, respectively. Since what we study in this paper is the
effects of perturbation on a single soliton, Eq.~1! is subject
to the initial condition

u~x,o!52a2 sech2a~x2x0!. ~3!

At first, we linearize Eq.~1! following the lines of Refs.@11,
12#. The independent variablet is transformed into several
variables by

tn5ent, n50,1,2,..., ~4!

where eachtn is an order ofe smaller than the previous time.
Thus the time derivatives should be replaced by the expan-
sion

] t5] t01e] t11e2] t21••• . ~5!

At the same time,u andR[u] are expanded in an asymptotic
series

u5u~0!1eu~1!1e2u~2!1••• , ~6!

R@u#5R~1!@u0#1eR~2!@u~0!,u~1!#1••• . ~7!

Substituting Eqs.~5!–~7! into Eq. ~1!, and equating the co-
efficients of each power ofe, we obtain the following ap-
proximation equations of different orders:

ut0
~0!16u~0!ux

~0!1uxxx
~0! 50, ~8!

ut0
~1!16u~0!ux

~1!16ux
~0!u~1!1uxxx

~1! 5R~1!@u0#2ut1
~0! , ~9!

ut0
~2!16u~0!ux

~2!16ux
~0!u~2!1uxxx

~2!

5R~2!@u~0!,u~1!#2ut2
~0!2ut1

~1!26u~1!ux
~1! . . . . ~10!

Meanwhile, the initial condition~3! should be replaced by

u~0!~x,0!52a2 sech2a~x2x0!,

u~n!~x,0!50 for n51,2,... . ~11!

The zeroth-order approximation equation~8! is just the stan-
dard KdV equation. It has a single-soliton solution that is
formally the same as Eq.~2!:

u~0!~x,t0!52a2 sech2z, z5a~x2j!, j t054a2.
~12!

Due to perturbation, the soliton parametersa andj are now
supposed to be functions of the slow time variablest1 ,t2 ,...,
but a is independent oft0, and the dependence ofj on t0 is
given byj t054a2. It follows from Eq. ~12! that

utn
~0!54aatnf1~z!14a3j tnf2~z!, n51,2,..., ~13!

where

f1~z!5
1

4a

]

]a
u~0!5~12z tanhz!sech2z, ~14!

f2~z!5
1

4a3
]

]j
u~0!5tanhz sech2z. ~15!

Then the linearized KdV equations~9! and ~10!, together
with the appropriate initial conditions~11! are reduced into
the following form with the aid of Eq.~13!:

ut0
~1!1a3L̂u~1!5F ~1!~z!

[R~1!24aat1f1~z!24a3j t1f2~z!,

u~1!~z,0!50, ~16!

ut0
~2!1a3L̂u~2!5F ~2!~z!

[R~2!24aat2f1~z!24a3j t2f2~z!2ut1
~1!

26au~1!uz
~1! ,

u~2!~z,0!50, ~17!

wherez is the space coordinate in a system moving with the
soliton, andL̂ is a linear differential operator defined as fol-
lows:

L̂5
d3

dz3
1~12 sech2z24!

d

dz
224 tanhz sech2z. ~18!

It is apparent thatL̂ is not self-adjoint, and its adjoint is

L̂†5
d3

dz3
1~12 sech2z24!

d

dz
. ~19!

III. EIGENVALUE PROBLEM

Now we derive the solutions of the linearized KdV equa-
tions~16! and~17! by the separation of variables. It is known
that the key to this problem is to solve the eigenvalue prob-
lem of operatorL̂ and its adjointL̂†,

L̂f5lf. ~20!

L̂†c5l8c. ~21!
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In Appendix A, the eigenfunction of Eq.~20! for continuous
eigenvaluel52ik(k214), 2`,k,` is derived in a gen-
eral way,

f~z,k!5
1

A2pk~k214!
@k~k214!14i ~k212!tanhz

28k tanh2z28i tanh3z#eikz, ~22!

and it is easy to check directly thatL̂ also has a eigenfunc-
tion for discrete eigenvaluel50,

f2~z!5tanhz sech2z. ~23!

Similarly, for the associated eigenvalue problem~21!, we
have

c~z,k!5
1

A2p~k214!
@k224ik tanhz24 tanh2z#e2 ikz

~24!

for continuous eigenvaluel85ik(k214), 2`,k,`, and

c1~z!5sech2z ~25!

for the discrete eigenvaluel850.
There is a functionf1(z)5~12z tanhz!sech2z that satis-

fies the equationLf1(z)528f2(z). It turns out to be a
standard problem and is well known thatf1(z) needs to be
included in the completeness relationship. In the meantime,
for its adjoint states, another functionc2(z)5tanhz
1z sech2z needs to be included as well. The complete-
ness of $f%5$f(z,k),f j (z); j51,2% and $c%
5$c(z,k),c j (z); j51,2% is expressed as

PE
2`

`

f~z,k!c~z8,k!dk1(
j51

2

f j~z!c j~z8!5d~z2z8!,

~26!

where P denotes the principal value of an integral, sincek50
is a simple pole of the integrand. The following orthogonal
relations are also proved in Appendix C:

E
2`

`

f~z,k!c~z,k8!dz5d~k2k8!, ~27!

E
2`

`

f~z,k!c j~z!dz5E
2`

`

c~z,k!f j~z!dz50, j51,2,

~28!

E
2`

`

f j~z!f l~z!dz5d j l , j ,l51,2. ~29!

Based on this complete basis, any functionF(z) can be ex-
panded in a generalized Fourier integral as follows:

F~z!5PE
2`

`

f ~k!f~z,k!dk1(
j51

2

f jf j~z!, ~30!

where the generalized Fourier coefficients can be obtained by
the orthogonality

f ~k!5E
2`

`

F~z!c~z,k!dz, ~31!

f j5E
2`

`

F~z!c j~z!dz, j51,2. ~32!

IV. EFFECTS OF PERTURBATION ON A SOLITON

Now we return to Eqs.~16! and~17!. First, let us consider
the first-order approximation equation~16!. To solve this
initial-value problem by separation of variables, we expand
u~1! andF ~1! on the basis$f% as

u~1!~z,t0!5PE
2`

`

T~1!~ t0 ,k!f~z,k!dk1(
j51

2

Tj
~1!~ t0!f j~z!,

~33!

F ~1![R~1!24aat1f1~z!24a3j t1f2~z!

5PE
2`

`

f ~1!~k!f~z,k!dk1(
j51

2

f j
~1!f j~z!. ~34!

The expansion coefficients ofF (1)(z) are obtained by em-
ploying the orthogonality relations Eqs.~27!–~29! as fol-
lows:

f ~1!~k!5E
2`

`

R~1!@u~0!~z!#c~z,k!dz, ~35!

f 1
~1!524aat11E

2`

`

R~1!@u~0!~z!#c1~z!dz, ~36!

f 2
~1!524a2j t11E

2`

`

R~1!@u~0!~z!#c2~z!dz. ~37!

We now substitute Eqs.~33! and~34! into Eq.~16!, and note
that L̂f(z,k)52 ik(k214)f(z,k), L̂f2(z)50, and
L̂f1(z)528f2(z). Then Eq.~16! may be rewritten as

PE
2`

`

@ Ṫ~1!~ t0 ,k!2 ik~k214!a3T~1!~ t0 ,k!#f~z,k!dk

1Ṫ1
~1!~ t0!f1~z!1Ṫ2

~1!~ t0!f2~z!28a3T1
~1!~ t0!f2~z!

5PE
2`

`

f ~1!~k!f~z,k!dk1(
j51

2

f j
~1!f j~z!, ~38!

where the overdot signifies derivative with respect tot0.
Multiplying Eq. ~38! by c(z,k), c1(z), and c2(z) succes-
sively, and then integrating overz, we obtain the following
ordinary differential equations:

Ṫ~1!~ t0 ,k!2 ik~k214!a3T~1!~ t0 ,k!5 f ~1!~k!,

T~1!~0,k!50, ~39!

Ṫ1
~1!~ t0!5 f 1

~1! , T1
~1!~0!50, ~40!

Ṫ2
~1!~ t0!28a3T1

~1!~ t0!5 f 2
~1! , T2

~1!~0!50, ~41!
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where the zero-initial conditions T(1)(0,k)
5T 1

(1)(0)5T 2
(1)(0)50 come from the second equation in

Eq. ~16!. Since bothf 1
~1! and f 2

~1! are constants, Eqs.~40! and
~41! will lead to the secularity. In fact, while integrating Eq.
~40!, it yields T 1

(1)5 f 1
(1)t0 , which grows infinitely in time.

So we must demand that

f 1
~1!50→T1

~1!~ t0![0. ~42!

Then Eq.~41! is reduced toṪ 2
(1)(t0)5 f 2

(1), and similarly,

f 2
~1!50→T2

~1!~ t0![0. ~43!

Now we are going to find out the effects of perturbation on
the soliton. At first, inserting Eqs.~42! and ~43! into Eqs.
~36! and ~37!, we get the following two important formulas
immediately:

at15
1

4a E
2`

`

R~1!@u~0!#c1~z!dz

5
1

4a E
2`

`

R~1!@u~0!#sech2z dz, ~44!

j t15
1

4a3 E2`

`

R~1!@u~0!#c2~z!dz

5
1

4a3 E2`

`

R~1!@u~0!#~ tanhz1z sech2z!dz. ~45!

Obviously, Eqs.~44! and ~45! are the same with those ob-
tained in other ways@11,12#. They determine how the soliton
shape and position are affected by the perturbation. As to Eq.
~39!, it is a first-order ordinary differential equation with
constant coefficients and the right-hand side is independent
of t0, so it can be solved easily in a standard method:

T~1!~ t0 ,k!52 f ~1!~k!$12exp@ ik~k214!a3t0#%/ ik~k2

14!a3. ~46!

Substituting Eq. ~46! into Eq. ~33!, and noting that
T 1
(1)(t0)5T 2

(1)(t0)50, we get

u~1!~z,t0!52PE
2`

` f ~1!~k!

ik~k214!a3

3$12exp@ ik~k214!a3t0#%f~z,k!dk, ~47!

where f (1)(k) is determined by the perturbation through Eq.
~35!. One can see clearly from Eq.~47! that the first-order
correctionu(1)(z,t0) is associated with the continuous spec-
trum only. While combining Eq.~35! with Eq. ~47!, this
correction can be expressed in terms of a Green’s function,

u~1!~z,t0!5E
2`

`

G~1!~z,z8;t0!R
~1!@u~0!~z8!#dz8, ~48!

where the first-order Green’s functionG(1)(z,z8;t0) is de-
fined by

G~1!~z,z8;t !52PE
2`

` 12exp@ ik~k214!a3t#

ik~k214!a3

3f~z,k!c~z8,k!dk. ~49!

In a similar way, we can derive the higher-order effects of
perturbation to the soliton. For example, the second-order
effects are given as follows:

at15
1

4a E
2`

`

$R~2!@u~0!,u~1!#2ut1
~1!26au~1!uz

~1!%sech2z dz,

~50!

j t25
1

4a3 E2`

`

$R~2!@u~0!,u~1!#2ut1
~1!26au~1!uz

~1!%

3~ tanhz1z sech2z!dz, ~51!

u~2!52PE
2`

` f ~2!~k!

ik~k214!a3

3$12exp@ ik~k214!a3t0#%f~z,k!dk, ~52!

where

f ~2!~k!5E
2`

`

@R~2!2ut1
~1!26au~1!uz

~1!#c~z,k!dz. ~53!

A more detailed discussion is omitted here for simplicity.

V. TIME-DEPENDENT PERTURBATIONS

In this section, we show that our approach is particularly
convenient for the study of the time-dependent perturbations.
For this purpose, we assume that the perturbationR(x,t) is a
given function ofx and t. In the coordinate system moving
with the soliton, it is denoted byR(z,t). Obviously, Eqs.
~33!–~41! in Sec. IV still apply, except that coefficients
f (1)(k) and f j

(1), j51,2 are now time dependent, and are
denoted byf (1)(t0 ,k) and f j

(1)(t0), respectively. For later
convenience, we rewrite Eqs.~39!–~41! as follows:

Ṫ~1!~ t0 ,k!2 ik~k214!a3T~1!~ t0 ,k!5 f ~1!~ t0 ,k!,

T~1!~0,k!50. ~54!

Ṫ1
~1!~ t0!5 f 1

~1!~ t0!, T1
~1!~0!50, ~55!

Ṫ2
~1!~ t0!28a3T1

~1!~ t0!5 f 2
~1!~ t0!, T2

~1!~0!50, ~56!

where

f ~1!~ t0 ,k!5E
2`

`

R~1!~z,t0!c~z,k!dz, ~57!

f 1
~1!~ t0!524aat11E

2`

`

R~1!~z,t0!c1~z!dz, ~58!
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f 2
~1!~ t0!524a3j t11E

2`

`

R~1!~z,t0!c2~z!dz. ~59!

The solution of Eq.~54! can also be derived in a standard
method:

T~1!~ t0 ,k!5E
0

t0
dt f ~1!~t,k!exp@ ik~k214!a3~ t02t!#.

~60!

We have seen that, in the case of time-independent perturba-
tions, the secularity condition isf 1

(1)5 f 2
(1)50 ~which just

determines the time dependence of the two soliton param-
eters!. Although we wonder whether it is always true for
time-dependent perturbations, we assume that Eqs.~42! and
~43! given in Sec. IV still apply. Of course, for the time-
dependent perturbations, they should be replaced by

f 1
~1!~ t0!5 f 2

~1!~ t0!50, ~61!

which still leads toT 1
(1)(t0)5T 2

(1)(t0)50 and

at15
1

4a E
2`

`

R~1!~z,t0!c1~z!dz, ~62!

j t15
1

4a3 E2`

`

R~1!~z,t0!c2~z!dz. ~63!

From Eqs.~33! and ~60!, we then obtain the first-order cor-
rection:

u~1!~z,t0!5P E
0

t0
dtE

2`

`

dk f~1!~t,k!

3exp@ ik~k214!a3~ t2t!#f~z,k!. ~64!

Substituting Eq.~57! into Eq. ~64!, we obtain the first-order
Green’s function for time-dependent perturbations:

u~1!~z,t0!5E
0

t0
dtE

2`

`

dz8R~1!~z8,t0!G
~1!~z,z8;t0 ,t!,

~65!

G~1!~z,z8;t0 ,t!5P E
2`

`

dk exp@ ik~k214!

3a3~ t02t!#f~z,k!c~z8,k!. ~66!

It must be pointed out that although Eq.~61! @which corre-
sponds to the secularity conditions~42! and ~43!# is sug-
gested as an assumption, it is easy to check that the solution
u obtained under this assumption really satisfies the per-
turbed KdV equation and the appropriate initial condition

ut24a3uz16auuz1a3uzzz5eR~z,t !,

u~z,0!52a2 sech2Z. ~67!

In fact, up to first-order approximation, we have

ut5ut01e~ut1
~0!1ut0

~1!!. ~68!

According to Eqs.~13! and ~62!–~64!, it follows that

ut1
~0!54aat1f1~z!14a3j t1f2~z!

5E
2`

`

R~1!~z8,t0!@f1~z!c1~z8!1f2~z!c2~z8!#dz8,

~69!

ut0
~1!5P E

0

t0
dtE

2`

`

dk ik~k214!a3f ~1!~t,k!

3exp@ ik~k214!a3~ t2t!#f~z,k!

1P E
2`

`

dk f~1!~ t0 ,k!f~z,k!, ~70!

24a3uz
~1!16au~0!uz

~1!16auz
~0!u~1!1a3uzzz

~1!

5P E
0

t0
dtE

2`

`

dk f~1!~t,k!

3exp@ ik~k214!a3~ t02t!#a3L̂f~z,k!

52P E
0

t0
dtE

2`

`

dk@ ik~k214!a3# f ~1!~t,k!

3exp@ ik~k214!a3~ t02t!#f~z,k!. ~71!

Consequently, the left-hand side of the first equation in Eq.
~67! becomes

ut24auz16auuz1a3uzzz

5eE
2`

`

R~1!~z8,t0!(
j51

2

f j~z!c j~z8!dz8

1eE
2`

`

dk f~1!~ t0 ,k!f~z,k!. ~72!

Noting that up to first-order approximation
R(z,t)5R(1)(z,t0), and employing Eq.~57!, we finally ob-
tain

ut24a3uz16auuz1a3uzzz

5eE
2`

` FP E
2`

`

dk f~z,k!c~z8,k!

1(
j51

2

f j~z!c j~z8!Gdz8
5eE

2`

`

R~1!~z8,t0!d~z2z8!dz8

5eR~1!~z,t0!. ~73!

It is clear from Eq.~65! that u(1)(z,0)50, and thusu(z,t)
satisfies the initial conditionu(z,0)52a2 sech2z.
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VI. DAMPING KdV EQUATION

As an important example, we consider the damping KdV
equation in whichR[u]52u,

ut16uux1uxxx52eu. ~74!

At first, the time dependence of the soliton parameters can be
easily obtained from Eqs.~44! and ~45!:

at152
1

4a E
2`

`

2a2 sech2z sech2z dz522a/3, ~75!

j t152
1

4a3 E2`

`

2a2 sech2z~ tanhz1z sech2z!dz50.

~76!

It follows from Eq. ~75! immediately that

a5a0 exp~22t1/3!, ~77!

which means that the height of the soliton dampens with
time exponentially. Next, we calculate the first-order correc-
tion given in Eq.~47!, wheref (1)(k) can be calculated from
Eq. ~35!,

f ~1!~k!5A2pa2k/3 sinh
p

2
k. ~78!

Substituting Eq.~78! into Eq. ~47!, we obtain immediately

u~1!~z,t0!

5
A2p

3ia
P E

2`

` 12exp@ ik~k214!a3t0#

~k214!sinh~pk/2!
f~z,k!dk.

~79!

We have seen from Eqs.~75! and ~76! that the time depen-
dence of the soliton parameters is just the same as that ob-
tained by the other methods@1#. We would like to point out
that this is true for the correctionu~1! also. At first let us
compare it with that derived by Herman@13,14#. To see this,
we note that in Eq.~79!, parametera should be taken as a
constant up to first-order approximation, and we make the
following transformation;a5h0, z5w, k52l/h0, and re-
placet0 by t. Thenf(z,k) is related to functionFA(w,t;l)
used in Refs.@13, 14# by

f~z,k!5
2 i

2A2pl

l1 ih0

l2 ih0
exp~28ilh0

2t !FA~w,t;l!.

~80!

Substituting Eq.~80! into Eq. ~79!, and through some calcu-
lations, we get

u~1!5
A2p

3ia
P E

2`

` 12exp@ ik~k214!a3t#

~k214!sinh~pk/2!
f~z,k!dk

5P E
2`

` exp~28ilh0
2t !2exp~8il3t !

12l~ il1h0!
2 sinh~pl/h0!

FA~w,t;l!dl.

~81!

It is somewhat different fromu1 given in Eq.~73! in Ref.
@13# by a factor2~l21h0

2! in the integrand. This difference
is caused by some errors in the calculation in Ref.@13#. In
fact, if we start from Eq.~B1! in Ref. @13#, we obtain also
our u1.

Moreover, ouru~1! given by Eq.~79! is consistent with
that obtained by the inverse scattering perturbation theory
@1#. To show this, we neglect the slow time dependence of
the soliton parameters in the first-order correction, namely,
we let t05t, a5a0 , andj5j014a2t in Eq. ~79!, up to the
first-order approximation. Then we take the same approxi-
mation as Ref.@1#: ~a! Neglect the slowz dependence in
tanhz, i.e., we let tanh2 z'1 in the integrand at the right-
hand side of Eq.~79!; ~b! Since the factoreikz in the inte-
grand of Eq.~79! oscillates rapidly for largek, we expect
that the dominant contribution to the integral will come from
the region neark50. Thus the terms with higher powers ofk
can be neglected. After doing these,u~1! is simplified into

u~1!~x,t !5
1

3a0
P E

2`

` dk

2p i

e2ik~x2j0!

k
~e8ik

2t2e28ika0
2t!.

~82!

Consequently,

ux
~1!5

1

6pa0
E

2`

`

dk eik~s2j0!~eik
3t2e24ia0

2kt!

5
1

3a0~3t !
1/3 Ai F x2j0

~3t !1/3G2d~x2j024a0
2t !, ~83!

u~1!~x,t !5
1

3a0
E

2`

~x2j0!/~3t !1/3

dk Ai ~k!2u~x2j024a0
2t !,

~84!

whereu(x) and Ai(x) are the step function and Airy func-
tion, respectively. Equations~82!–~84! are all the same as
those obtained by the inverse scattering perturbation theory
given by Eqs.~9.2.31!–~9.2.33! in Ref. @1#.

VII. KdV-BURGERS EQUATION

As another example, we consider KdV-Burgers equation

ut16uux1uxxx5euxx . ~85!

HereR[u]5uzz and thus

R~1!@u~0!#5uxx
~0!58a4 sech2z212a4 sech4z. ~86!

Inserting Eq.~86! into Eqs.~44! and ~45!, we get

at5
e

4a E
2`

`

~8a4 sech2z212a4 sech4z!sech2z dz

528ea3/15, ~87!

j t54a21
e

4a3 E2`

`

~8a4 sech2z212a4 sech4z!~ tanhz

1z sech2z!dz54a2, ~88!

respectively. It follows that

54 6821DIRECT APPROACH TO THE STUDY OF SOLITON . . .



a5a0 /~1116ea0
2t/15!1/2, ~89!

j5j0115 ln~1116ea0
2t/15!/4e, ~90!

which are the same as those derived by other methods@11#.
To find out the first-order correction, let us calculate the
expansion coefficient corresponding to the continuous spec-
trum:

f ~1!~k!5E
2`

`

~8a4 sech2z212a4 sech4z!c~z,k!dz

524pA2pa4~2k/152k5/100!/~k214!sinh~pk/2!

14A2pa4k/3 sinh~pk/2!. ~91!

The correction is obtained by inserting Eq.~86! into Eq.~35!.
It is interesting that under the same approximation as that
introduced for the damping KdV equation, we have

u~1!~x,t !52
32

15
a0 P E

2`

` dk

2p i

e2ik~x2j0!

k

3~e8ik
3t2e28ika0

2t!, ~92!

which is proportional to the correction for the damping KdV
equation@see Eq.~82!#. We should note that they have an
opposite sign.

APPENDIX A: DERIVATION OF EIGENFUNCTIONS
f„z,k… AND c„z,k…

Let us consider the eigenvalue problem

L̂f5lf, ~A1!

where L̂5d3/dz31~12 sech2z24!d/dz224 tanhz sech2z.
Obviously,L̂→d3/dz324d/dz asz→6`. We assume that

f~z,k!5u~z,k!eikz, ~A2!

where u(z,k) is supposed to have the asymptotic
behavior: u(z,k)→const asz→6`. Then the asymptotic
equation of Eq.~A1! leads tol52ik(k214). Inserting Eq.
~A2! into Eq.~A1!, one obtains an ordinary differential equa-
tion for u,

L̂u1 ik~3d2/dz2112 sech2z!u23k2du/dz50. ~A3!

To determineu(z,k), we expand it into a power series ofik
whose coefficientsu (n)(z) are functions ofz only,

u5u~0!~z!1 iku~1!~z!1~ ik !2u~2!~z!1••• . ~A4!

Substituting Eq.~A4! into Eq. ~A3!, and equating the coef-
ficients of each power ofik, one obtains the following recur-
sion equations:

L̂u~0!50, ~A5!

L̂u~1!523uzz
~0!212 sech2zu~0!, ~A6!

L̂u~2!523uzz
~1!212 sech2zu~1!23uz

~0! , ~A7!

L̂u~3!523uzz
~2!212 sech2zu~2!23uz

~1! ... . ~A8!

It is easy to solve Eqs.~A5!–~A8! successively, and then we
get the following special solution:

u~0!5c tanhz sech2z, u~1!5c~ 1
22sech2z!,

u~2!52
c

2
tanhz,

u~3!5 1
8c, u~n!50 for n>4, ~A9!

where the arbitrary constantc is determined by the normal-
ization condition asc58i /k(k214)A2p. Consequently we
obtain

f~z,k!5
1

k~k214!A2p
@k~k224!14ik2 tanhz

18k sech2z18i tanhz sech2z#eikz

5
1

k~k214!A2p
@k~k214!14i ~k212!tanhz

28k tanh2z28i tanh3z#eikz. ~A10!

The eigenfunctionc(z,k) of L̂† can be derived in the same
way.

APPENDIX B: COMPLETENESS OF SETS ˆf‰ AND ˆc‰

We start from the integral

P E
2`

`

f~z,k!c~z8,k!dk5P E
2`

` F 12p
eik~z2z8!1 f ~k!Gdk,

~B1!

where f (k) is defined by

f ~k!5f~z,k!c~z8,k!2
1

2p
eik~z2z8!. ~B2!

Inserting Eqs.~22! and ~24! into Eq. ~B2!, f (k) is rewritten
as

f ~k!5
1

2p
eik~z2z8!g~k!

5
1

2p
eik~z2z8!@g1~k!1g2~k!1g1~k!g2~k!#,

~B3!

with

g1~k!5
4

k214
~ ik tanhz22 tanh2z12i tanhz sech2z/k!,

~B4!

g2~k!52
4

k214
~ ik tanhz81tanh2z811!. ~B5!
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It is easy to see thatf (k) as a function of complex variablek
is analytical everywhere except for a simple polek050 and
two double poles62i , at which the residues off (k) can be
derived in a standard way:

Res f ~0!5 lim
k→0

k f~k!52 i tanhz sech2z~12sech2z8!/p,

~B6!

Res f ~62i !5 lim
k→62i

d

dk
@~k72i ! f ~k!#

5
i

2p
tanhz sechz~sechz8e6z86z8 sech2z8

7z sech2z8!6
i

2p
e7z sech3z sech2z8.

~B7!

Now, let us return to Eq.~B1!. Obviously the first term of the
integrand at the right-hand side of Eq.~B1! contributes
d~z2z8!. The integral of the second term can be calculated
with the aid of the residue theorem. Sinceug(k)u→0 as
uku→`, according to Jordan’s lemma, it follows that

PE
2`

`

f ~k!dk562p i @ 1
2 Res f ~0!1Res f ~62i !#,

~B8!

where, the upper or lower symbol corresponds to~z2z8!.0
or ~z2z8!,0, respectively. Substituting Eqs.~B6! and ~B7!
into Eq. ~B8!, we get immediately

E
2`

`

f ~k!dk52~sech2z2z tanhz sech3!sech2z8

2tanhz sech2z~ tanhz81z8 sech2z8!

52@f1~z!c1~z8!1f2~z!c2~z8!#. ~B9!

Finally we obtain the completeness relation from Eqs.~B1!
and ~B9!,

E
2`

`

f~z,k!c~z8,k!dk1(
j51

2

f j~z!c j~z8!5d~z2z8!.

~B10!

APPENDIX C: ORTHOGONALITY OF SETS ˆf‰ AND ˆc‰

Before the proof of the orthogonality relations, we must
derive some useful integral formulas. At first let us calculate
the following integral by the aid of the residue theorem:

I 15E
2`

`

ei ~k2k8!z tanhz dz. ~C1!

To do this, we consider a complex integral along a closed
pathc in planez5z1 ih as follows:

R
c
f 1~z!dz5 R

c
ei ~k2k8!z tanhz dz. ~C2!

Since the factor tanhj in the integrand is a periodic function
with an imaginary periodip, we choosec to be the bound-
ary of a rectangular region infinitely long:2`,z
,`, 0<h<p. In this region the integrand is analytic ex-
cept for a simple polez05ip/2. We note thatei (k2k)z

oscillates rapidly for largez. Then the integral along the two
straight line segments:z56`, 0<h<p should be zero.
It follows that

R
c
f 1~z!dz5@12e2~k2k8!p#I 1 . ~C3!

On the other hand, according to the residue theorem,

R
c
f 1~z!dz52p i Res f 1~z0!. ~C4!

The residue is easily obtained by the standard method

Res f 1~z0!5 lim
z→z0

~z2z0! f 1~z!5e2~k2k8!p/2. ~C5!

Comparing Eqs.~C3!, ~C4!, and~C5!, we get immediately

I 15E
2`

`

ei ~k2k8!z tanhz dz5 ip/sinh12p~k2k8!.

~C6!

Starting from Eq.~C6!, and employing the techniques of
integration by parts repeatedly, we can perform the following
integrals successively:

I 25E
2`

`

ei ~k2k8!z
1

cosh2z
dz5p~k2k8!/sinh12p~k2k8!,

~C7!

I 35E
2`

`

ei ~k2k8!z
sinhz

cosh3z
dz

5
i

2
p~k2k8!2/sinh12p~k2k8!, ~C8!

I 45E
2`

`

ei ~k2k8!z
1

cosh4z
dz5 1

6p@~k2k8!3

14~k2k8!#/sinh12p~k2k8!, ~C9!

I 55E
2`

`

ei ~k2k8!z
sinhz

cosh5z
dz5

i

24
@~k2k8!4

14~k2k8!2#/sinh12p~k2k8!. ~C10!

Now we return to the orthogonality relations. As an example,
let us perform the following integral in detail:

E
2`

`

f~z,k!c~z,k8!dz5E
2`

` F 12p
ei ~k2k8!z1 f ~z!Gdz

5d~k2k8!1E
2`

`

f ~z!dz, ~C11!
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where the functionf (z) is defined as

f ~z!5f~z,k!c~z,k8!2
1

2p
ei ~k2k8!z. ~C12!

Equations~22! and ~24! can be rewritten into

f~z,k!5ceikzFk~k224!14ik2 tanhz1
8k

cosh2z

18i
sinhz

cosh3zG , ~C13!

c~z,k8!5c8e2 ik8zF ~k8224!24ik8 tanhz1
4

cosh2zG ,
~C14!

respectively. In Eqs.~C13! and ~C14!, c51/A2pk(k214)
and c851/A2pk(k214) are normalization constants. Sub-
stituting Eqs.~C13! and ~C14! into Eq. ~C11!, we get

E
2`

`

f ~z!dz5cc8@24i ~k2k8!~kk814!I 114~k314k2k8

12kk82212k18k8!I 214i ~4k228kk8

12k8228!I 3132~k2k8!I 4132i I 5#. ~C15!

Inserting Eqs. ~C6!–~C10! into Eq. ~C15!, we get
*2`

` f (z)dz50 through a series of calculations. Finally we
obtain from Eq.~C11! that

E
2`

`

f~z,k!c~z,k8!dz5d~k2k8!. ~C16!

Thus Eq.~27! has been proved. The orthogonality relations
~28! can be derived in the same way, while Eq.~29! is easily
obtained by a straightforward calculation.
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